# EVIDENCE ON DEVELOPMENTAL AND REPRODUCTIVE TOXICITY OF QUIZALOFOP-ETHYL

REPRODUCTIVE AND CANCER HAZARD
ASSESSMENT SECTION
OFFICE OF ENVIRONMENTAL HEALTH HAZARD
ASSESSMENT
DECEMBER 13, 1999

# Basis for Consideration of Quizalofop ethyl

• Formal identification by the U.S. Environmental Protection Agency as causing (male) reproductive toxicity

• After publication of a Notice of Intent to List, referred to the DART Committee because the data used by the authoritative body did not meet the criteria specified in regulations

#### Quizalofop-ethyl

• Phenoxypropionic acid ester

• [(2-(4-((6-chloro-2-quinoxalinyl)oxy)phenoxy)-ethyl ester]

• C<sub>19</sub>H<sub>17</sub>ClN<sub>2</sub>O<sub>4</sub> (Molecular weight 372.81)

#### Uses

Formerly used as a herbicide on broadleaf crops

 Not registered for use in California since 1993

#### **Developmental effects**

- Human data: none identified
- Animal data: 3 studies

- Rabbits: 1 study
  - \* orally exposed on days 6-18 of gestation, no adverse developmental effects (high dose mildly toxic to the dams)

- Rats: 2 studies
- Developmental toxicity study
  - \* orally exposed on days 6-15 of gestation
  - \* lower fetal survival at day 21 at the highest dose tested (p<0.05)
  - \* higher incidence of skeletal variations at the high (p<0.001) and mid (p<0.05) doses

- Developmental toxicity study (continued)
  - \* lower postnatal bodyweight and food intake in high dose offspring
  - \* lower absolute (p<0.01) and relative (p<0.05) uterine weights in high dose female offspring at age 8 weeks
  - \* No effects on reproductive function at age 10 weeks in animals treated *in utero*

- 2-generation reproductive toxicity study
  - \* decreased percentage or number of pups born alive in the  $F_{1A}$  and  $F_{2A}$  high-dose litters
  - \* decrease birthweights in the high-dose litters in the  $F_{1A}$  and  $F_{1B}$  groups
  - \* decrease early postnatal weights in the high-dose litters in the  $F_{1A}$ ,  $F_{1B}$  and  $F_{2B}$  groups

- 2-generation reproductive toxicity study (continued)
  - \* increased incidence of hemangioma in all treatment groups ( $F_{1B}$  generation) and the mid- and high-dose groups ( $F_{2A}$  generation)

#### Female reproductive effects

- Human data: none identified
- Animal data:
- One 2-generation reproductive toxicity study in rats, one study in rats of effects of *in utero* exposure on reproductive function
- Five studies of potential reproductive organ effects

- Rats: 2-generation reproduction study
  - \* Significant decrease in fertility index in low-dose dams of the  $F_{1A}$  generation (no effect on mid- and high-dose dams in this generation, no effect on any dose groups in other generations)

- Dogs: 2 subchronic studies
  - \* uterine and ovarian weights varied from control values, no apparent dose-response relationship

- Rats: 2 subchronic/chronic studies
  - \* no evidence of effects on female reproductive organs

- Mice: 1 chronic study
  - \* uterine and ovarian weights increased at all doses tested
  - \* increased incidence of ovarian hemorrhage at the high dose tested

#### Male reproductive effects

- Human data: none identified
- Animal data:
- One 2-generation reproductive toxicity study in rats, one study in rats of effects of *in utero* exposure on reproductive function
- 5 studies of potential reproductive organ effects

- Rats: 2-generation reproduction study
  - \* Significant decrease in fertility index in low-dose males of the  $F_0$  generation (no effect on mid- and high-dose males in this generation or the  $F_{1A}$  generation
  - \* Single incidence of focal hyperplasia of the testis in a high-dose male in the  $F_{1A}$  group

- Dogs: 2 subchronic studies
  - \* 6 month study; testicular atrophy reported at high dose tested (basis for authoritative body identification of reproductive toxicity)
  - \* 12 month study; same design as above, more comprehensive assessment of testes did not identify any testicular atrophy

- Rats: 2 studies
  - \* 13 week study; high incidence of testicular atrophy at end of treatment and also after a 6 week recovery period
  - \* 104 week study; no testicular atrophy after exposure to approximately one third the effective dose in the earlier study

- Mice: 1 chronic study
  - \* 78 week study; increased incidence of testicular atrophy.
  - \* Bilateral atrophy increased in doserelated manner at two highest doses.
  - \* Combined unilateral and bilateral atrophy increased at all doses

#### Summary

• Evidence for developmental toxicity of quizalofop-ethyl

- Developmental toxicity study (rats exposed on days 6-15 of gestation):
  - lower fetal survival
  - higher incidence of skeletal variations

- Developmental toxicity study (rats exposed on days 6-15 of gestation) (continued):
  - lower postnatal bodyweight and food intake
  - lower absolute and relative uterine weights at 8 weeks of age

- 2-generation reproductive toxicity study (rats):
  - decreased live births, birthweights and early postnatal weights
  - increased incidence of hemangioma in pups

• Evidence for female reproductive toxicity of quizalofop-ethyl:

increased ovarian weights and increased incidence of ovarian hemorrhage after 78 weeks exposure in mice

• Evidence for male reproductive toxicity of quizalofop-ethyl:

- testicular atrophy in dogs exposed to quizalofop-ethyl for 6 months (but not in dogs exposed for 12 months)
- increased incidence of testicular atrophy in rats exposed for 13 weeks

- increased incidence of testicular atrophy in mice exposed for 78 weeks
- isolated decrease in fertility index in lowdose males of the  $F_0$  generation only in a 2-generation reproduction study
- single incidence of focal hyperplasia of the testis in an F<sub>1</sub> rat from a 2-generation reproduction study